Assignment 12.

Laurent Series. Isolated singular points.

This assignment is due Wednesday, April 17. Collaboration is welcome. If you do collaborate, make sure to write/type your own paper.

NOTATION. We sometimes use $\sum_{\mathbb{Z}}^{\infty}$ instead of $\sum_{n=-\infty}^{\infty}$.

(1) Prove that if the Laurent series

$$\sum_{\mathbb{Z}} a_n z^n$$

represents an even function, then $a_{2k+1} = 0$ $(k \in \mathbb{Z})$, while if the series represents an odd function, then $a_{2k} = 0$ $(k \in \mathbb{Z})$. (*Hint:* Use integral formula for c_n .)

(2) Suppose f has a Laurent expansion

$$f(z) = \sum_{\mathbb{Z}} a_n (z - z_0)^n$$

in an annulus $r < |z - z_0| < \infty$. Prove that f(z) can be also represented in the form

$$f(z) = \sum_{\mathbb{Z}} \tilde{a}_n z^n$$

in an annulus $\tilde{r} < |z| < \infty$.

COMMENT. This problem justifies use of the term "Laurent expansion at ∞ " without specifying center z_0 , since by the statement above we can choose z_0 to be 0.

(3) Expand each of the following functions in a Laurent series at the indicated points:

(a) $\frac{1}{z^2+1}$ at z = i and $z = \infty$, (b) $z^2 e^{1/z}$ at z = 0 and $z = \infty$.

(4) Find and classify singular points (i.e. in each case decide whether the point is removable, a pole of order N, essential, or not an isolated singular point), including infinity, of the following functions:

(a)
$$\frac{1}{z-z^3}$$
, (b) $\frac{1}{(z^2+4)^2}$, (c) $\frac{e^z}{1+z^2}$, (d) $\frac{z^2+1}{e^z}$, (e) $\frac{1}{e^z-1} - \frac{1}{z}$,
(f) e^{-1/z^2} .

(5) Find and classify singular points, including infinity, of the following functions:

(a) $\tan z$, (b) $\cot \frac{1}{z}$, (c) $\cot \frac{1}{z} - \frac{1}{z}$.